L3. Introduction to Conditionals

Boolean expressions

 The If-Else ConstructAnd, or, not

The If-Else Construct Solves this Problem

We will introduce this language feature by solving problems about the behavior of a given quadratic

$$
q(x)=x^{2}+b x+c
$$

on a given interval $L<=x<=R$.

What We Cannot Do

We cannot make a computation contingent upon other things.

If the value of the arithmetic expression Dice1 + Dice2 is seven, then increase the value of the variable GamesWon by one.

Problem 1

Write a fragment that prints "yes" if $q(x)$ increases across the interval and "no" if it does not.

Solution Fragment

```
xc = -b/2;
if xc <= L
        disp('Yes')
        else
        disp('No')
    end
```

 Maximum at \(L\)
 $q(x)=x^{2}+b x+c$
- $x_{c}=-b / 2$

Problem 2

Write a fragment that prints the maximum value that $q(x)$ attains on the interval.

Solution Fragment
xc $=-b / 2 ;$ Mid $=(L+R) / 2 ;$ if $x c<=M i d$ maxVal $=R^{\wedge} 2+b^{*} R+c$ else maxVal $=L^{\wedge 2}+b^{*} L+c$ end

Problem 3
Write a fragment that prints
"yes" if $x c$ is in the interval
and "no" if $x c$ is not in the
interval.


```
Solution Fragment
xc = -b/2;
if (L <= xc) && (xc <= R)
    disp('Yes')
else
    disp('No')
end
```

Illegal: $\quad \mathbf{L}<=x c<=R$

Saying the Opposite

$x c$ is in the interval $[L, R]$ if
L <= xc and $x c<=R$
$x c$ is not in the interval $[L, R]$ if

$$
\mathrm{xc}<\mathrm{L} \text { or } \mathrm{R}<\mathrm{xc}
$$

Solution Fragment

```
xc = -b/2;
if (L <= xc) && (xc <= R)
    disp('Yes')
else
    disp('No')
end
```


Boolean Expressions

$$
(x c<L) \|(R<x c)
$$

Their value is either true or false.
Made up of comparisons that are either true or false.

Connected by logical operators: and, or, no \dagger

Another Solution Fragment

```
xc = -b/2;
if (xc < L) || (R < xc)
        disp('No')
else
        disp('Yes')
end
```

The if-else Construct
if boolean expression
Commands to execute if the
expression if TRUE
else
Commands to execute if the expression if FALSE
end

Boolean Expressions

($x c<L$) || ($R<x c$)
Their value is either true or false.
Made up of other (simpler) boolean expressions that are connected by boolean operators:
and, or, not

Arithmetic Expressions

$$
(x+3) *(y-z)
$$

Their value is a number.

Made up of other (simpler) arithmetic expressions that are connected by arithmetic operators:
+, -. *. /

The And Operator \& \&		
F	F	F
F	T	F
T	F	F
T	T	T

The Or Operator ||

$F \quad F \quad F$

F	T	T
T	F	T
T	T	T

> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to

Question Time

What is the value of \mathbf{X} and \mathbf{Y} after the following script is executed:

```
X = 6; Y = 8;
If X < Y
    Y = Y/2;
else
        X = X/2;
end
```

A. X is 3 and Y is 4
B. X is 6 and Y is 8
C. X is 6 and Y is 4
D. X is 3 and Y is 8

